

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Determination of the Stereochemistry of Substituted 4-(Sulfo- and Sulfonamidoalkyl) piperidine-2-carboxylic Acids with H NMR, COSY, and Homonuclear NOE Experiments

Ahmed El hadri<sup>ab</sup>, Fran<sup>c</sup>ois Thomasson<sup>ac</sup>, G<sup>r</sup>ard Leclerc<sup>a</sup>

<sup>a</sup> UFR de Pharmacie, Universit<sup>e</sup> Joseph Fourier de Grenoble, (France) <sup>b</sup> Laboratoire de Chimie Organique, Groupe de Pharmacochimie Mol<sup>ec</sup>ulaire, Meylan, Cedex <sup>c</sup> Laboratoire de Chimie Pharmacie URA CNRS, La Tronche, Cedex

**To cite this Article** hadri, Ahmed El , Thomasson, Fran<sup>c</sup>ois and Leclerc, G<sup>r</sup>ard(1995) 'Determination of the Stereochemistry of Substituted 4-(Sulfo- and Sulfonamidoalkyl) piperidine-2-carboxylic Acids with H NMR, COSY, and Homonuclear NOE Experiments', Spectroscopy Letters, 28: 5, 795 — 803

**To link to this Article:** DOI: 10.1080/00387019508009920

URL: <http://dx.doi.org/10.1080/00387019508009920>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**DETERMINATION OF THE STEREOCHEMISTRY OF  
SUBSTITUTED 4-(SULFO- AND SULFONAMIDOALKYL)  
PIPERIDINE-2-CARBOXYLIC ACIDS WITH  $^1\text{H}$  NMR, COSY, AND  
HOMONUCLEAR NOE EXPERIMENTS**

**Key Words :** NMDA, competitive antagonists, (sulfo- and sulfonamidoalkyl) piperidine-2-carboxylic acids, ethyl 4-(hydroxyalkyl)piperidine-2-carboxylates,  $^1\text{H}$  NMR spectra, Homonuclear NOE.

Ahmed El hadri<sup>a</sup>, François Thomasson<sup>b</sup>, and Gérard Leclerc<sup>\*a</sup>.

UFR de Pharmacie, Université Joseph Fourier de Grenoble (France),

(a) : Laboratoire de Chimie Organique, Groupe de Pharmacochimie Moléculaire, 5 Avenue de verdun, BP 138, 38243 Meylan Cedex.

(b) : Laboratoire de Chimie Pharmacie URA CNRS n°1287, 38706 La Tronche Cedex.

**ABSTRACT**

Basically the aim of this work is to define the accurate configuration of 4-substituted (sulfo- and sulfonamidoalkyl)piperidine-2-carboxylic acids which have been conceived as potential NMDA antagonists.  $^1\text{H}$  NMR and 2D NMR (COSY)

---

\* Author to whom correspondence should be addressed.

followed by qualitative Homonuclear NOE have led to the assignement of the (±) cis and (±) trans configuration of the whole family's compounds.

## INTRODUCTION

Numerous NMDA receptor antagonists have been described these last years<sup>1,2</sup>. Several of them were found active both against epilepsy<sup>3</sup>, ischemia<sup>4</sup> and as neuroprotectors<sup>5</sup>. CGS-19755 [4-(phosphonomethyl)piperidine-2-carboxylic acid]<sup>6</sup> and LY-257883<sup>7</sup> were among the most potent and promising compounds. We have focussed our attention on sulfonic analogs e.g. 4-(sulfo- and sulfonamido alkyl)piperidine-2-carboxylic acid dervatives as potential NMDA receptors antagonists<sup>8,9</sup> (fig.1). The key compounds in the preparation of this family were the ethyl 4-(hydroxy alkyl)piperidine-2-carboxylates (scheme I).

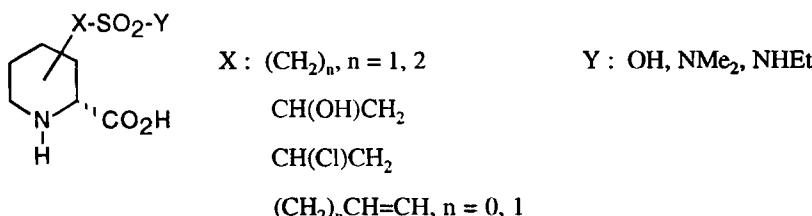
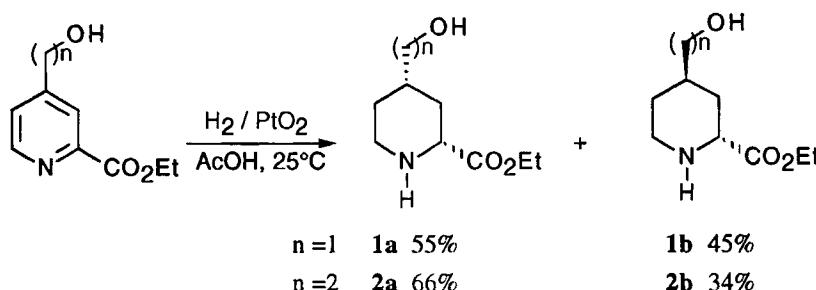
These compounds were obtained by catalytic reduction of the corresponding ethyl 4-(hydroxyalkyl)pyridine-2-carboxylate in AcOH with PtO<sub>2</sub> as catalyst. Unexpectedly enough both (±) cis and (±) trans isomers where obtained for n = 1 and 2.

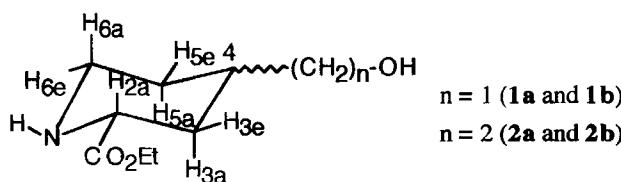
<sup>1</sup>H NMR and COSY experiments permitted to attribute the stereochemistry of compounds **1a** and **1b**, however for **2a** and **2b** additional Homonuclear NOE were needed.

## EXPERIMENTAL

The <sup>1</sup>H NMR spectra and NOE experiments were recorded at 20°C in 5 mm tube on a Bruker AC 200 spectrometer with a proton operating frequency of 200.13 MHz and referenced to the CDCl<sub>3</sub> or D<sub>2</sub>O signal.

Experiments in NOE difference spectroscopy were achieved on samples prealably filtered and degassed. The NOE is measured according to the method of Bell and Saurders<sup>10</sup>.



FIG. 1.



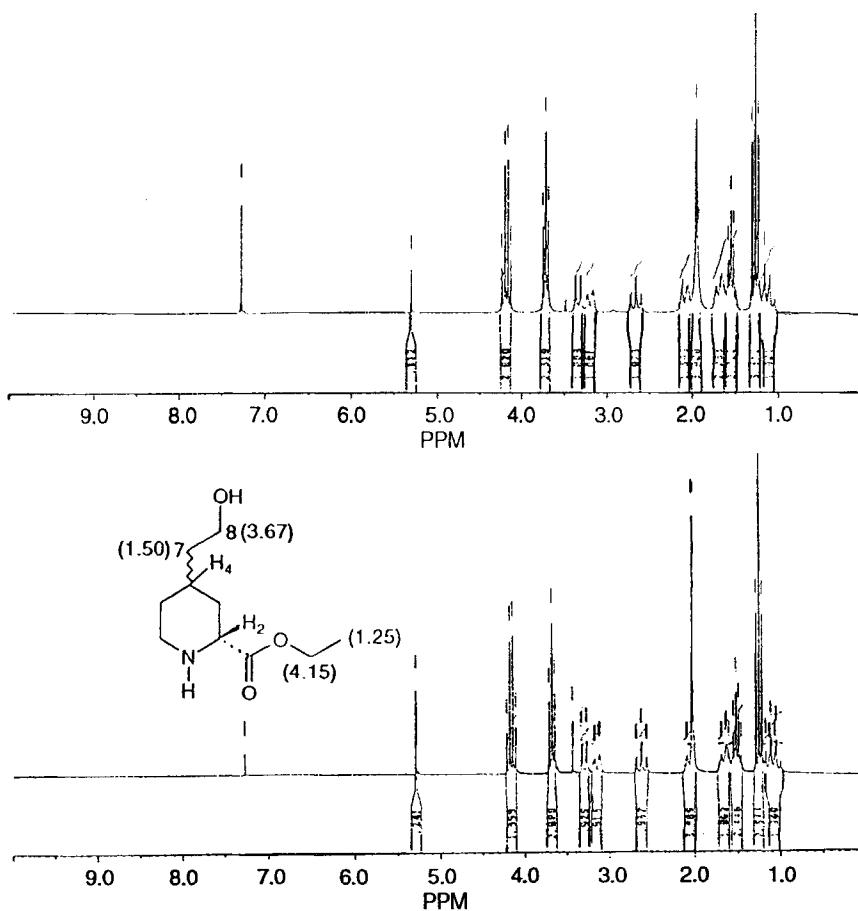

### Scheme 1

TABLE 1.

Chemical Shifts  $^1\text{H}$   $\delta$  (ppm) of Compounds **1a**, **1b**, **2a** and **2b**.



| Compd     | H <sub>2a</sub> | H <sub>3a</sub> | H <sub>3e</sub> | H <sub>4</sub> | H <sub>5a</sub> | H <sub>5e</sub> | H <sub>6a</sub> | H <sub>6e</sub> |
|-----------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|
| <b>1a</b> | 3.02            | 0.95            | 1.49            | 1.96           | 0.95            | 1.49            | 2.61            | 3.20            |
| <b>1b</b> | 3.12            | 0.92            | 1.57            | 1.97           | 1.05            | 1.57            | 2.60            | 3.28            |
| <b>2a</b> | 3.29            | 1.07            | 2.04            | 1.65           | 1.07            | 1.65            | 2.61            | 3.13            |
| <b>2b</b> | 3.29            | 1.07            | 2.04            | 1.65           | 1.07            | 1.65            | 2.61            | 3.13            |



**FIG. 2.**  $^1\text{H}$  NMR Spectra of Compounds **2a** and **2b** in  $\text{CDCl}_3$

## RESULTS AND DISCUSSION

The assignment of ( $\pm$ ) cis and ( $\pm$ ) trans configurations of compounds **1a**, **1b**, **2a** and **2b** was based on  $^1\text{H}$  NMR spectra assuming a chair conformation for these derivatives. Selective irradiations were helpful to achieve the accurate configuration of all protons (table 1, fig.2).

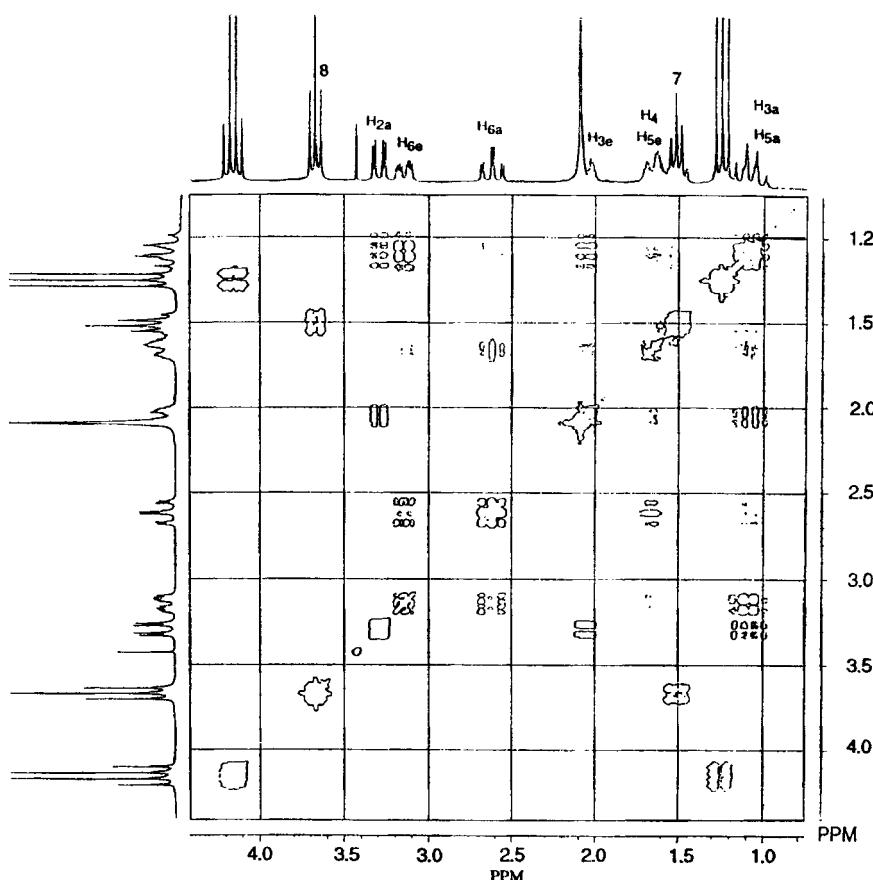



FIG. 3. COSY Spectra of Compound 2b

2D  $^1\text{H}$  NMR were in agreement with the initial interpretations. The COSY spectrum of compounds **2b** (fig.3) is given as an example.

- Coupling constants measured on the  $\text{H}_2$  proton ( $J = 12.0, 3.0$  Hz) of compounds **1a**, **1b**, **2a** and **2b** indicate an axial position.
- coupling constants measured at 1.96 and 1.97 ppm for **1a** ( $J = 12.02, 3.0$  Hz) and **1b** ( $J = 3.0, 2.2$  Hz) indicate respectively an axial and an equatorial position

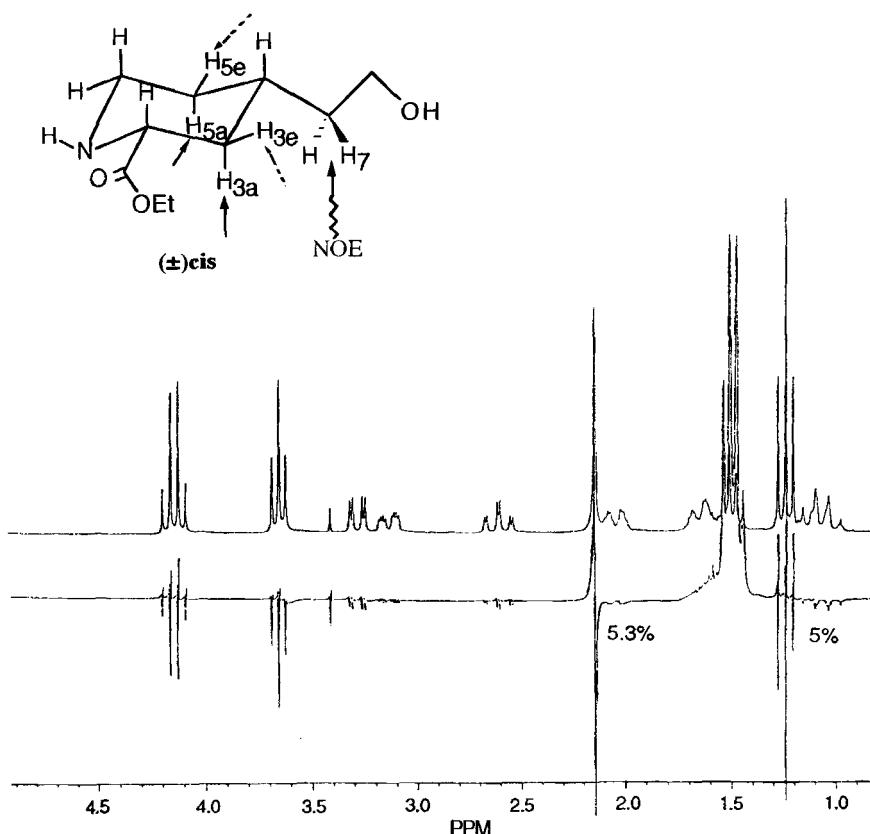
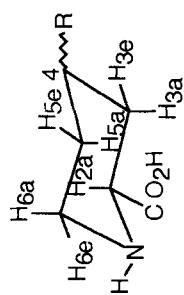




FIG. 4.

for  $H_4$  and consequently a  $(\pm)$  cis configuration for **1a** and a  $(\pm)$  trans configuration for **1b**.

- the signal at 1.65 ppm for **2a** or **2b** corresponds to protons  $H_4$  and  $H_{5e}$ . The coupling constant associated to this signal ( $J = 12-13$  Hz) did not permit to attribute the configuration of  $H_4$ , because the geminal coupling between  $H_{5a}$  and  $H_{5e}$  and the vicinal  $H_{4a}$ ,  $H_{5a}$  coupling are identicals. This assignment was achieved by Homonuclear NOE. Selective irradiations of  $H_7$  protons of **2a** and **2b** indicate a

TABLE 2.  
Chemical Shifts  $\delta$   $^1\text{H}$  (ppm) of the Disubstituted-2,4-Piperidine Derivatives.



| Compd     | R                                                          | Stereochem.    | $\text{H}_{2\text{a}}$ | $\text{H}_{3\text{a}}$ | $\text{H}_{3\text{e}}$ | $\text{H}_4$ | $\text{H}_{5\text{a}}$ | $\text{H}_{5\text{e}}$ | $\text{H}_{6\text{a}}$ | $\text{H}_{6\text{e}}$ |
|-----------|------------------------------------------------------------|----------------|------------------------|------------------------|------------------------|--------------|------------------------|------------------------|------------------------|------------------------|
| <b>3a</b> | $\text{CH}_2\text{SO}_3\text{H}$                           | ( $\pm$ )cis   | 3.63                   | 1.32                   | 2.36                   | 2.02         | 1.32                   | 2.02                   | 2.87                   | 3.33                   |
| <b>3b</b> | $(\text{CH}_2)_2\text{SO}_3\text{H}$                       | ( $\pm$ )cis   | 3.37                   | 1.15                   | 2.11                   | 1.72         | 1.15                   | 1.72                   | 2.79                   | 3.25                   |
| <b>3c</b> | $(\text{CH}_2)_2\text{SO}_2\text{NMe}_2$                   | ( $\pm$ )cis   | 3.50                   | 1.18                   | 2.14                   | 1.80         | 1.18                   | 1.80                   | 2.80                   | 3.27                   |
| <b>3d</b> | $\text{CH}(\text{OH})\text{CH}_2\text{SO}_2\text{NHEt}$    | ( $\pm$ )cis   | 3.07                   | 0.88                   | 1.79                   | 1.44         | 0.88                   | 1.44                   | 2.32                   | 2.88                   |
| <b>3e</b> | $\text{CH}(\text{Cl})\text{CH}_2\text{SO}_2\text{NHEt}$    | ( $\pm$ )cis   | 3.32                   | 1.31                   | 2.12                   | 1.71         | 1.31                   | 1.71                   | 2.68                   | 2.91                   |
| <b>4a</b> | $\text{CH}=\text{CH}-\text{SO}_2\text{NMe}_2^*$            | ( $\pm$ )cis   | 3.75                   | 1.42                   | 2.26                   | 1.89         | 1.42                   | 1.89                   | 2.87                   | 3.34                   |
| <b>4b</b> | $\text{CH}_2\text{CH}=\text{CH}-\text{SO}_2\text{NMe}_2^*$ | ( $\pm$ )cis   | 3.52                   | 1.14                   | 2.32                   | 2.01         | 1.14                   | 2.01                   | 2.79                   | 3.22                   |
| <b>4c</b> | $\text{CH}_2\text{CH}=\text{CH}-\text{SO}_2\text{NMe}_2^*$ | ( $\pm$ )trans | 3.56                   | 1.16                   | 2.33                   | 2.03         | 1.16                   | 2.03                   | 2.81                   | 3.24                   |

\* : Z configuration

mutual relationship between  $H_{3a}$ ,  $H_{5a}$  and  $H_{3a}$  for **2b** (NOE effect of 5% for  $H_{3a}$ ,  $H_{5a}$  and 5.3% for  $H_{3e}$ , for  $H_{5e}$  the NOE effect could not be observed because of its vicinity with  $H_7$ ). These data are only in agreement with a ( $\pm$ ) cis stereochemistry (fig 4).

On the contrary irradiation of  $H_7$  for **2a** has no effect on  $H_{3a}$ ,  $H_{5a}$  and  $H_{5e}$  and only a weak one on  $H_{2a}$  and  $H_{6a}$ . Consequently the stereochemistry of **2a** is ( $\pm$ ) trans.

The above results were used to assign unambiguously the accurate stereochemistry of a series of compounds derived from **1a**, **1b**, **2a** and **2b**. The data are gathered in table 2.

## CONCLUSION

Basically the aim of this study is to define the exact configuration of disubstituted-2,4-piperidines. A previsual survey has been undertaken from the  $^1H$  and 2D spectra analysis. The qualitative study with Homonuclear NOE effect leads to the assignement of the accurate configuration and reveal a good coherence with the previsual study.

We have also observed that in the all series of 2,4-disubstituted piperidines, the shielding of piperidine protons varies in the decreasing order of  $H_{2a} > H_{6e} > H_{6a} > H_{3e} > H_4, H_{5e} > H_{3a}, H_{5a}$ . Consequently this observation can be used as an easy method to assign the configuration of these compounds.

## REFERENCES

1. Watkins J.C., Olverman H.J., Agonists and antagonists for excitatory amino acid receptors. *Trends in Neurosci.* 1987, **10** (7), 265-272.
2. George P., Frost J., Carter C., Scatton B., Benavides J., NMDA receptor antagonists-potential agents for the therapy of stroke and head trauma. *Actual. Chim. Thér.*, 1994 - 21é série, 45-67.

3. Meldrum B.S., Possible therapeutic applications of antagonists of excitatory aminoacid neurotransmitters. *Clin. Sci.*, 1985, 68, 113-122.
4. Simon R.P., Swan J.H., Griffiths T., Meldrum B.S., Blackade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. *Science*, 1984, 226, 850-852.
5. Wülfert E., Stratégies de recherches pharmaceutiques dans la maladie d'Alzheimer. *J. Pharm. Belg.*, 1991, 46, 67-77.
6. Lehmann J., Chapman A.G., Meldrum B.S., Hutchinson I., Tsai C., Wood P.L., CGS-19755 is a potent and competitive antagonist at NMDA-type receptors. *Euro. J. Pharmacol.* 1988, 154, 89-93.
7. Ornstein P.L., Schaus J.M., Chambers J.W., Huster D.L., Leander J.D., Wong D., Paschal J. W., Jones N.D., Deeter J.B., Synthesis and pharmacology of a series of 3- and 4-(Phosphonoalkyl)pyridine- and piperidine-2-carboxylic acids : Potent N-methyl-D-aspartic acid receptor antagonists. *J. Med. Chem.* 1989, 32, 827-833.
8. El hadri A., Maldivi P., Leclerc G., Rocher J.P., Syntheses, Activity and Modeling studies of 3- and 4-(sulfo and sulfonamidoalkyl)pyridine and piperidine-2-carboxylic acid derivatives as analogs of NMDA receptor antagonists. *BioMed. Chem.* (submitted).
9. El hadri A., Leclerc G., A convenient synthesis of 4-(sulfomethyl)piperidine-2-carboxylic acid : NMR assignement. *J. Heterocycl. Chem.*, 1993, 30, 631-635.
10. Bell R.A., Saurders J.K., Nuclear Overhauser effect. *Can. J. Chem.*, 1970, 48, 1114-1122.

Date Received: February 23, 1995  
Date Accepted: March 22, 1995